Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Separate Pathways Contribute to the Herbivore-Induced Formation of 2-Phenylethanol in Poplar.

Identifieur interne : 000721 ( Main/Exploration ); précédent : 000720; suivant : 000722

Separate Pathways Contribute to the Herbivore-Induced Formation of 2-Phenylethanol in Poplar.

Auteurs : Jan Günther [Allemagne] ; Nathalie D. Lackus [Allemagne] ; Axel Schmidt [Allemagne] ; Meret Huber [Allemagne] ; Heike-Jana Stödtler [Allemagne] ; Michael Reichelt [Allemagne] ; Jonathan Gershenzon [Allemagne] ; Tobias G. Köllner [Allemagne]

Source :

RBID : pubmed:30846485

Descripteurs français

English descriptors

Abstract

Upon herbivory, the tree species western balsam poplar (Populus trichocarpa) produces a variety of Phe-derived metabolites, including 2-phenylethylamine, 2-phenylethanol, and 2-phenylethyl-β-d-glucopyranoside. To investigate the formation of these potential defense compounds, we functionally characterized aromatic l-amino acid decarboxylases (AADCs) and aromatic aldehyde synthases (AASs), which play important roles in the biosynthesis of specialized aromatic metabolites in other plants. Heterologous expression in Escherichia coli and Nicotiana benthamiana showed that all five AADC/AAS genes identified in the Ptrichocarpa genome encode active enzymes. However, only two genes, PtAADC1 and PtAAS1, were significantly upregulated after leaf herbivory. Despite a sequence similarity of ∼96%, PtAADC1 and PtAAS1 showed different enzymatic functions and converted Phe into 2-phenylethylamine and 2-phenylacetaldehyde, respectively. The activities of both enzymes were interconvertible by switching a single amino acid residue in their active sites. A survey of putative AADC/AAS gene pairs in the genomes of other plants suggests an independent evolution of this function-determining residue in different plant families. RNA interference -mediated-downregulation of AADC1 in gray poplar (Populus × canescens) resulted in decreased accumulation of 2-phenylethylamine and 2-phenylethyl-β-d-glucopyranoside, whereas the emission of 2-phenylethanol was not influenced. To investigate the last step of 2-phenylethanol formation, we identified and characterized two Ptrichocarpa short-chain dehydrogenases, PtPAR1 and PtPAR2, which were able to reduce 2-phenylacetaldehyde to 2-phenylethanol in vitro. In summary, 2-phenylethanol and its glucoside may be formed in multiple ways in poplar. Our data indicate that PtAADC1 controls the herbivore-induced formation of 2-phenylethylamine and 2-phenylethyl-β-d-glucopyranoside in planta, whereas PtAAS1 likely contributes to the herbivore-induced emission of 2-phenylethanol.

DOI: 10.1104/pp.19.00059
PubMed: 30846485
PubMed Central: PMC6548255


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Separate Pathways Contribute to the Herbivore-Induced Formation of 2-Phenylethanol in Poplar.</title>
<author>
<name sortKey="Gunther, Jan" sort="Gunther, Jan" uniqKey="Gunther J" first="Jan" last="Günther">Jan Günther</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, D-07745 Jena</wicri:regionArea>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>D-07745 Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lackus, Nathalie D" sort="Lackus, Nathalie D" uniqKey="Lackus N" first="Nathalie D" last="Lackus">Nathalie D. Lackus</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, D-07745 Jena</wicri:regionArea>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>D-07745 Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Axel" sort="Schmidt, Axel" uniqKey="Schmidt A" first="Axel" last="Schmidt">Axel Schmidt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, D-07745 Jena</wicri:regionArea>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>D-07745 Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huber, Meret" sort="Huber, Meret" uniqKey="Huber M" first="Meret" last="Huber">Meret Huber</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, D-07745 Jena</wicri:regionArea>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>D-07745 Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stodtler, Heike Jana" sort="Stodtler, Heike Jana" uniqKey="Stodtler H" first="Heike-Jana" last="Stödtler">Heike-Jana Stödtler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, D-07745 Jena</wicri:regionArea>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>D-07745 Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, D-07745 Jena</wicri:regionArea>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>D-07745 Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, D-07745 Jena</wicri:regionArea>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>D-07745 Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany koellner@ice.mpg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, D-07745 Jena</wicri:regionArea>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>D-07745 Jena</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30846485</idno>
<idno type="pmid">30846485</idno>
<idno type="doi">10.1104/pp.19.00059</idno>
<idno type="pmc">PMC6548255</idno>
<idno type="wicri:Area/Main/Corpus">000A00</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A00</idno>
<idno type="wicri:Area/Main/Curation">000A00</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A00</idno>
<idno type="wicri:Area/Main/Exploration">000A00</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Separate Pathways Contribute to the Herbivore-Induced Formation of 2-Phenylethanol in Poplar.</title>
<author>
<name sortKey="Gunther, Jan" sort="Gunther, Jan" uniqKey="Gunther J" first="Jan" last="Günther">Jan Günther</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, D-07745 Jena</wicri:regionArea>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>D-07745 Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lackus, Nathalie D" sort="Lackus, Nathalie D" uniqKey="Lackus N" first="Nathalie D" last="Lackus">Nathalie D. Lackus</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, D-07745 Jena</wicri:regionArea>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>D-07745 Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Axel" sort="Schmidt, Axel" uniqKey="Schmidt A" first="Axel" last="Schmidt">Axel Schmidt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, D-07745 Jena</wicri:regionArea>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>D-07745 Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huber, Meret" sort="Huber, Meret" uniqKey="Huber M" first="Meret" last="Huber">Meret Huber</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, D-07745 Jena</wicri:regionArea>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>D-07745 Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stodtler, Heike Jana" sort="Stodtler, Heike Jana" uniqKey="Stodtler H" first="Heike-Jana" last="Stödtler">Heike-Jana Stödtler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, D-07745 Jena</wicri:regionArea>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>D-07745 Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, D-07745 Jena</wicri:regionArea>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>D-07745 Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, D-07745 Jena</wicri:regionArea>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>D-07745 Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany koellner@ice.mpg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, D-07745 Jena</wicri:regionArea>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>D-07745 Jena</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aldehyde Reductase (metabolism)</term>
<term>Biosynthetic Pathways (MeSH)</term>
<term>Down-Regulation (genetics)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Herbivory (physiology)</term>
<term>Kinetics (MeSH)</term>
<term>Metabolome (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Mutation (genetics)</term>
<term>Phenylethyl Alcohol (chemistry)</term>
<term>Phenylethyl Alcohol (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>RNA Interference (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alcool phénéthylique (composition chimique)</term>
<term>Alcool phénéthylique (métabolisme)</term>
<term>Aldose reductase (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Herbivorie (physiologie)</term>
<term>Interférence par ARN (MeSH)</term>
<term>Mutation (génétique)</term>
<term>Métabolome (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Régulation négative (génétique)</term>
<term>Voies de biosynthèse (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Phenylethyl Alcohol</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aldehyde Reductase</term>
<term>Phenylethyl Alcohol</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Alcool phénéthylique</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Down-Regulation</term>
<term>Mutation</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mutation</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Régulation négative</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alcool phénéthylique</term>
<term>Aldose reductase</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Herbivorie</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Herbivory</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biosynthetic Pathways</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Kinetics</term>
<term>Metabolome</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>RNA Interference</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Famille multigénique</term>
<term>Gènes de plante</term>
<term>Interférence par ARN</term>
<term>Métabolome</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Voies de biosynthèse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Upon herbivory, the tree species western balsam poplar (
<i>Populus trichocarpa</i>
) produces a variety of Phe-derived metabolites, including 2-phenylethylamine, 2-phenylethanol, and 2-phenylethyl-β-d-glucopyranoside. To investigate the formation of these potential defense compounds, we functionally characterized aromatic l-amino acid decarboxylases (AADCs) and aromatic aldehyde synthases (AASs), which play important roles in the biosynthesis of specialized aromatic metabolites in other plants. Heterologous expression in
<i>Escherichia coli</i>
and
<i>Nicotiana benthamiana</i>
showed that all five
<i>AADC</i>
/
<i>AAS</i>
genes identified in the
<i>P</i>
<i>trichocarpa</i>
genome encode active enzymes. However, only two genes,
<i>PtAADC1</i>
and
<i>PtAAS1</i>
, were significantly upregulated after leaf herbivory. Despite a sequence similarity of ∼96%, PtAADC1 and PtAAS1 showed different enzymatic functions and converted Phe into 2-phenylethylamine and 2-phenylacetaldehyde, respectively. The activities of both enzymes were interconvertible by switching a single amino acid residue in their active sites. A survey of putative
<i>AADC</i>
/
<i>AAS</i>
gene pairs in the genomes of other plants suggests an independent evolution of this function-determining residue in different plant families. RNA interference -mediated-downregulation of
<i>AADC1</i>
in gray poplar (
<i>Populus</i>
×
<i>canescens</i>
) resulted in decreased accumulation of 2-phenylethylamine and 2-phenylethyl-β-d-glucopyranoside, whereas the emission of 2-phenylethanol was not influenced. To investigate the last step of 2-phenylethanol formation, we identified and characterized two
<i>P</i>
<i>trichocarpa</i>
short-chain dehydrogenases, PtPAR1 and PtPAR2, which were able to reduce 2-phenylacetaldehyde to 2-phenylethanol in vitro. In summary, 2-phenylethanol and its glucoside may be formed in multiple ways in poplar. Our data indicate that PtAADC1 controls the herbivore-induced formation of 2-phenylethylamine and 2-phenylethyl-β-d-glucopyranoside in planta, whereas PtAAS1 likely contributes to the herbivore-induced emission of 2-phenylethanol.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30846485</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>180</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2019</Year>
<Month>06</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Separate Pathways Contribute to the Herbivore-Induced Formation of 2-Phenylethanol in Poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>767-782</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.19.00059</ELocationID>
<Abstract>
<AbstractText>Upon herbivory, the tree species western balsam poplar (
<i>Populus trichocarpa</i>
) produces a variety of Phe-derived metabolites, including 2-phenylethylamine, 2-phenylethanol, and 2-phenylethyl-β-d-glucopyranoside. To investigate the formation of these potential defense compounds, we functionally characterized aromatic l-amino acid decarboxylases (AADCs) and aromatic aldehyde synthases (AASs), which play important roles in the biosynthesis of specialized aromatic metabolites in other plants. Heterologous expression in
<i>Escherichia coli</i>
and
<i>Nicotiana benthamiana</i>
showed that all five
<i>AADC</i>
/
<i>AAS</i>
genes identified in the
<i>P</i>
<i>trichocarpa</i>
genome encode active enzymes. However, only two genes,
<i>PtAADC1</i>
and
<i>PtAAS1</i>
, were significantly upregulated after leaf herbivory. Despite a sequence similarity of ∼96%, PtAADC1 and PtAAS1 showed different enzymatic functions and converted Phe into 2-phenylethylamine and 2-phenylacetaldehyde, respectively. The activities of both enzymes were interconvertible by switching a single amino acid residue in their active sites. A survey of putative
<i>AADC</i>
/
<i>AAS</i>
gene pairs in the genomes of other plants suggests an independent evolution of this function-determining residue in different plant families. RNA interference -mediated-downregulation of
<i>AADC1</i>
in gray poplar (
<i>Populus</i>
×
<i>canescens</i>
) resulted in decreased accumulation of 2-phenylethylamine and 2-phenylethyl-β-d-glucopyranoside, whereas the emission of 2-phenylethanol was not influenced. To investigate the last step of 2-phenylethanol formation, we identified and characterized two
<i>P</i>
<i>trichocarpa</i>
short-chain dehydrogenases, PtPAR1 and PtPAR2, which were able to reduce 2-phenylacetaldehyde to 2-phenylethanol in vitro. In summary, 2-phenylethanol and its glucoside may be formed in multiple ways in poplar. Our data indicate that PtAADC1 controls the herbivore-induced formation of 2-phenylethylamine and 2-phenylethyl-β-d-glucopyranoside in planta, whereas PtAAS1 likely contributes to the herbivore-induced emission of 2-phenylethanol.</AbstractText>
<CopyrightInformation>© 2019 American Society of Plant Biologists. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Günther</LastName>
<ForeName>Jan</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0001-8042-5241</Identifier>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lackus</LastName>
<ForeName>Nathalie D</ForeName>
<Initials>ND</Initials>
<Identifier Source="ORCID">0000-0002-0419-8937</Identifier>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schmidt</LastName>
<ForeName>Axel</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huber</LastName>
<ForeName>Meret</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stödtler</LastName>
<ForeName>Heike-Jana</ForeName>
<Initials>HJ</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reichelt</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0002-6691-6500</Identifier>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gershenzon</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0002-1812-1551</Identifier>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Köllner</LastName>
<ForeName>Tobias G</ForeName>
<Initials>TG</Initials>
<Identifier Source="ORCID">0000-0002-7037-904X</Identifier>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany koellner@ice.mpg.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>03</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.1.21</RegistryNumber>
<NameOfSubstance UI="D000449">Aldehyde Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ML9LGA7468</RegistryNumber>
<NameOfSubstance UI="D010626">Phenylethyl Alcohol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Plant Physiol. 2019 Jun;180(2):693-694</RefSource>
<PMID Version="1">31160522</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000449" MajorTopicYN="N">Aldehyde Reductase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053898" MajorTopicYN="Y">Biosynthetic Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="N">Herbivory</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055442" MajorTopicYN="N">Metabolome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010626" MajorTopicYN="N">Phenylethyl Alcohol</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30846485</ArticleId>
<ArticleId IdType="pii">pp.19.00059</ArticleId>
<ArticleId IdType="doi">10.1104/pp.19.00059</ArticleId>
<ArticleId IdType="pmc">PMC6548255</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2013 Dec 26;8(12):e83169</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24386157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Mar 4;286(9):6999-7009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21169366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1989 Apr 15;77(1):51-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2744487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Jul 29;4:260</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23908659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Dec 12;8(1):2080</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29234041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2012 Mar 15;169(5):444-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22236980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Nov 18;354(6314):890-893</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27856908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Aug;51(3):485-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes (Basel). 2018 Nov 26;9(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30486329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Nov 28;14:304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25429804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15728-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24019469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Feb;109(3):414-426</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;184(1):48-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19674332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jan 25;288(4):2376-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23204519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Apr;15(5):1275-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16626454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2011 Jan 15;168(2):88-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20650544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2007 Jun;10(6):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17498148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Naturwissenschaften. 2005 Jun;92(6):277-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15812573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Aug;230(3):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19521717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2014 Oct;106:37-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25107664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2014 Sep 19;14:242</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25230758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Feb;61(4):1111-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20065117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Sep 18;14:247</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25230835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2011 Feb;177(2):258-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21460561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2015 Oct 28;15:262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26511849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Feb;72(3):235-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19882107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2015 May 1;179:40-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25840343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 May;66(4):591-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21284755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Nov;68(21):2660-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17644147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2018 Jan 8;11(1):95-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29275165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Sep 27;277(39):36357-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12118007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ethnopharmacol. 2006 Feb 20;103(3):439-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16199132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Jun;14(6):785-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11386374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Mar;146(3):888-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Dec;32(5):701-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12472686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Oct;208(2):298-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25970829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2009 Jun 18;583(12):1895-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19450582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1115-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15075399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2008 Jan;69(1):88-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17706731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Nov;24(4):437-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11115125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2017 Dec;47:105-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28822280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Apr;74(8):2259-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2015 Feb;37(2):167-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25389065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Aug;12(4):479-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19467919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 May 23;103(21):8287-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2018 Jun;105(6):959-962</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29924385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Jun;78(6):1060-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24684685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2001 Jan;56(1):5-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11198818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2016 Jan;90(1-2):171-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26577640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Feb 01;6:20234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26831950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2007 Oct;71(10):2408-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17928708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Aug 23;7:1268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27602045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Dec;80(6):1095-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25335755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Aug 18;281(33):23357-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16766535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1992 Apr;11(3):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Feb 12;274(7):4273-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9933628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Feb;37(4):603-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14756770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Nov;25(11):4737-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24220631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2018 Jan 8;11(1):205-217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29277428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Oct;27(10):1159-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25014592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Jun;72(9):897-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21492885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Feb;25(3):325-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11208024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2000 May;54(2):121-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10872203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Oct 11;14:270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25303804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2002 May;66(5):943-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12092844</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Gunther, Jan" sort="Gunther, Jan" uniqKey="Gunther J" first="Jan" last="Günther">Jan Günther</name>
</noRegion>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<name sortKey="Huber, Meret" sort="Huber, Meret" uniqKey="Huber M" first="Meret" last="Huber">Meret Huber</name>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
<name sortKey="Lackus, Nathalie D" sort="Lackus, Nathalie D" uniqKey="Lackus N" first="Nathalie D" last="Lackus">Nathalie D. Lackus</name>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
<name sortKey="Schmidt, Axel" sort="Schmidt, Axel" uniqKey="Schmidt A" first="Axel" last="Schmidt">Axel Schmidt</name>
<name sortKey="Stodtler, Heike Jana" sort="Stodtler, Heike Jana" uniqKey="Stodtler H" first="Heike-Jana" last="Stödtler">Heike-Jana Stödtler</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000721 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000721 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30846485
   |texte=   Separate Pathways Contribute to the Herbivore-Induced Formation of 2-Phenylethanol in Poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30846485" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020